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FOREWORD
This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronsutics and Space Administration under contract NASw-563.

The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1  Summary

1541-TR 2 Control of Plants Whose Representation Contains Derivatives
of the Control Variable

1541-TR 3 Modes of Finite Response Time Control
1541-TR 4 A Sufficient Condition 1n_0ptiﬁa1 Control
1541-TR 5 Time Optimal Control of Linear Recurrence Systems

1541-TR 6 Time-Optimal Bounded Phase Coordinate Control of Linear
Recurrence Systems

1541-TR 7 Penalty Functions and Bounded Phase Coordinate Control
1541-TR 8 Linear Programming and Bounded Phase Coordinate Control

‘ 1541-TR 9 Time Optimal Control with Amplitude and Rate Limited Controls

lbhl—TR 10 A Concise Formulation bf a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

1541-TR 11 A Note on System Truncation

1541-TR 12 State Determination for a Flexible Vehicle Without a Mode
| Shape Requirement

1541-TR 13 An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

1541-TR 14 M nimum Disturbance Effects Control of Linear Systems with
Linear Controllers ‘

1541-TR 15 An Alternate Derivation and Interpretation of the Drift-Minimum
Principle o

! 1541-TR 16 A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts

; and objectively discusses the significance of the results obtained. The

. results of inconclusive and/or .unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

T W e T T

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable ylelds & correct result.
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In section 3 it is shown that the problem of controlling m components
(1< mls:n),‘of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformlated as a problem of controlling
a single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section T.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

-Section 10 presents a reformilation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 135 to
develop a linear control law for a flexible rocket booster.

~ In section 14 a method for feedback control synthesis for minimum load
disturbance effects 1s derived. Examples are presented.

Section 15 shows that & linear fixed gain controller for a linear
constant coefficient plant may yield a 'certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.



STATE DETERMINATION FOR A FLEXIBLE
VEHICLE WITHOUT A MODE SHAPE REQUIREMENT*

%

By E. E. Fisher

ABSTRACT
A problem involving state determination for a flexible vehicle
without known mode shapes 1s considered. Condltions are established
which allow a least squares estimate of certain system parameters.

Knowledge of these parameters allows state determination.

The motion of a flexible vehlcle is assumed given by the
equation |
x = AX + bu (1)
where x 1s an n-vector representing the state of the system, u
is a scalar control variable, A is a constant n by n matrix, and
b is a constant n-vector. The system is conslidered to be
controllable, which is taken to mean that the vectors

n-1

- *%
A b,An 2,...,Ab,b are linearly independent . A vector z which

is related to x by a non-singular transformation

z = Mx (2)
is observable (capable of being measured). M is a constant
non-sihgular n by n matrix which depends on mode shape data but
is unknown. The matrices A and b are assumed known. Time
histories of z and u are assumed given. Conditions are sought
which allow the determination of the matrix M from the known data.

* Prepared under contract NASw-563 for the NASA

1:Research Sclentist, Minneapolis-Honeywell Regulator Company,

*¥ See for instance reference 1
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This would allow estimation of x by the equation
x =M1z (3)
ANALYSIS
Use 1s made of equations 1,2, and 3 to yield an equation
of motlon for z given by

z = MAM" 1z + Mbu. (4)
The substitution

>

C Mb (5)

reduces equation (4) to

z = Cz + du, (6)
Finally, this is written as the integral equation
' t t
z(t) - z(t,) = €[ z(7)dT + d [ u(7)dr. (7)
to to

If the components of the vector z(t) - z(to) are denoted by

fl(t),fe(t),...,fn(t), the components of the vector

t t
[ z(t)dt are denoted by gl(t),gg(t),...gn(t), and [ u(t)dt is
t t
(o) o]
denoted by v(t), then equation 7 takes the-component form
£,(t) = ¢ 18,(t) + cq8,(t) +ouot ¢y 8 (8) + a,v(E) (8)
fOI' 1l = 1,2,...,!1
Since the functions 31’82""gn’f1""fn’v are known functions

or integrals of known functions, they are known.

Suppose that by comparison of the known functions 812855+« 38,5V

with the functions fi it were possible to determine the matrices
C and d. Then the matrix M would be known because M satisfies the
equation

I = MN or M = LN~1 (9)
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where L is a matrix with columns d,Cd,Czd,...Cn'ld; and N is a
matrix with columns b,Ab,AEb,...,An'lb. The matrix N is non-

A1y are linearly

singular because the vectors b,Ab,A%b,...,
independent.

The remainder of the analysis 1s devoted to establishing a
sufficient condition which allows the estimation of the matrices
C and d by the method of least squares.

Minimization with respect to ciJ and di of the n error functions
El’EE""En given by

T n
E, = £ £, (t) - .z_1°1JgJ(t) - d,v(t)]2at (9)
o] J=
for 1 = 1,2,...,n will yield n sets of n+l linear equations

for the unknowns ciJ and di' In the event that the functions
81:85104:8 and v are linearly independent these equations will

be soluble for c and d A condition which is sufficient to

1 i°
insure this 1ineai independence is now established.

Since the set of functions 8118554048,V are integrals of
the functions Z13ZnseesZp,U they are linearly independent if and
only if the latter are. The latter set is, however, obtained from
the state components and control variable, XysXpseeeX, U by a
non-singular linear transformation. These are linearly
independent if and only if the state components and the control
variable are linearly indepencdeant, It will now be shown that a
requirement for non-linearity of the controller l1s sufficient to

insure this linear independence.
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A controller u = u(x) will be called non-linear if u is

not given by an equation of the form
U= kX o+ KXotk X (9)

where kl’ka"“kn are constants and the equgtion holds
ldentically in time.

The common linear feedback controller is not non-linear.
On the other hand, a bang-bang controller is non-linear. This
is seen by a continuity argument. The zero function is seen to
be a linear controller with kl = k2 = ..o = K_= 0., The following

u
theorem finishes the discussion.

THEOREM . Let XysXoseoesXy be state vector components and let

u = u(x) be a control variable which together satisfy equation (1).
Let the system given by equation (1) be controllable. Then if

the controller u = u{x) is a non-linear controller the functions
X13X5see03%K U will be linearly independent.

PROOF: The functions XqsXyseeasX U will be linearly independent
if and only if there is no non-trivial linear relationship

between them. Thus it is sufficient to prove that the truth of a

linear relationship e.x, + e u = 0 necessarily

1% Xy teot e x +oe o
implies that € =€ = ... =8 =€ 4= 0.
The truth of a linear relationship with e, nhonzero would
imply that u was a linear combination of XysXpseeesXp 3

that is that u was a linear controller. Since thls has been

excluded, it must be that 1 = 0.
A linear relationship 81Xy + esX, +...% e X, = 0 is thus
assumed true and 1t 1s shown that this implies € =€ =...= €8, = 0.

e = (el,ez,...,en) is taken as a row matrix and the relationship
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is written in matrix form as ex = O. On differentiation this
yields ex = O. Then by use of equation (1) eAx + ebu = O.

Because u is a non-linear controller, it must be that eb = 0. Thus,
eAx = 0 and by differentiation eAx = O, This, by equation 1,

yvlelds eA®x + eAb = 0. Because u 1s a non-linear controller, it
must also be that eAb = 0. Continuing in this manner there

results eb = 0, eAb = 0,...eAR"1

b = O, That is, e is orthogonal
to n linearly independent n-dimensional vectors, i.e., e 1s the

zero vector, which was to be proved.

CONCLUSIONS

It has been demonstrated that, given a controllable plant
with non-linear controller and given time histories of n functions
zg which depend on the state components Xy through a non-singular
linear transformation, it is possible by the method of
least squares to establish the matrix of the transformation.
The demonstration establishes, for the flexible vehicle problem,
the possibility of an "adaptive system" capable of state
determination without complete knowledge of mode shapes.
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